到底有多靠谱
就像在两个学术报告作出之前的十天内一些物理学家所做的那样,两个组的发言人在宣布这个激动人心结果的同时警告我们,希格斯粒子还不能说完全被发现了。
在过去发生过很多不靠谱的事情,实验粒子物理学家们时不时地宣布发现了什么,让理论粒子物理学家们激动了几天,写了很多论文,可使不久,等积累了更多的数据,“发现”消失了,因此不少理论粒子物理学家们都有了心理创伤,对置信度不“达标”的发现怀有警惕心理。
现在,ATLAS的局部置信度是3.6个标准误差,CMS的局部置信度有2.6个标准误差,分别是99.95%和99%可信。这还没有包括人为的涨落效应。物理学家在做统计时,用一定的能量区间来做直方图,这个做法有时会人为地放大涨落。所以,更加可靠的统计分析是整体置信度。如果考虑整体置信度,两个组的结果都不到3个标准误差,而在过去就有3个标准误差的“发现”随着时间蒸发了。
粒子物理学家用积分亮度来表示数据量,这相当于单位面积上发生了多少次粒子事件。2011年一年的数据到底有多少?用专业术语来说,每个组的积分亮度分别是5个飞靶倒数。用直观的比喻,大约是长2000米、宽100米、深1米的沙子数目。我们期待2012年两个实验组将毋庸置疑地发现上帝粒子,因为2012年的积分亮度将是2011年的4倍。如果上帝粒子的质量真的是125GeV,两个组都会获得5个标准误差的置信度。
这一次,希格斯粒子就像小偷一样一晃而过,留下了一些痕迹,特别是两个光子事件和四个轻子事件。有位物理学家说,他在25年前建议要重视两个光子事件(希格斯衰变后留下两个光子),而ATLAS和CMS分别多花了三千万美元建了足够好的光子探测器,这次真的派上用场了。
深层的对称性
作为人所周知的“上帝粒子”,希格斯粒子除了带给其他基本粒子质量,还负责破坏更深层次的对称性,使得我们这个世界看上去不那么完美,却更丰富多彩。
根据粒子物理标准模型,世界本来不止光子和胶子没有质量,传递弱相互作用的中间玻色子也没有质量。在物理学中流传一句话:“作用量决定动力学,对称性决定作用量。”这里,作用量是物理学中最重要的一个量,我们且不管它的数学定义。而对称性是我们熟悉的,例如,在真空中,没有特殊的点也没有特殊的方向,这对应于“平移不变性”和“转动不变性”,前者告诉我们真空中的任意两个点是平等的,后者告诉我们真空中所有方向是平等的。
在这些直观可以感到的对称性之外,基本物理学中还有一些隐性的对称性,它们的存在使得光子和胶子没有质量从而产生了力。本来,弱作用也有一种对称性,对应的传递弱力的中间玻色子也没有质量。但是,希格斯粒子就像一个指针,它的存在破坏了这种对称性(就像我们在真空里放一个指针破坏了所有方向的平等性),在破坏这种对称性的同时赋予中间玻色子以质量。这样,中间玻色子在真空中就像胖子一样跑不远,所以弱作用是短程力。
希格斯粒子还有一个特点,就是对真空的敏感性。真空其实不空,每时每刻,一些粒子在真空中瞬时出现,又瞬时消失。真空的这个特点叫量子涨落。希格斯粒子在破坏真空的对称性之后也“长胖了”,成为有质量的粒子,但是它的质量对瞬时产生和消失的粒子很敏感。理论家们计算后发现,其实希格斯粒子的自然质量要远远大于125GeV。如果希格斯粒子的质量远远大于125GeV,那么电子的质量和其他粒子的质量也应该很大,我们的世界就不会是目前这个样子。那么,是什么东西在冥冥之中保护了希格斯,让它不会吃得太胖?这是粒子物理学家数十年来一直疑惑的大问题。
还有超对称
有一个也存在了数十年的对称性可以帮助物理学家(从而帮助了整个世界!),这个对称性叫超对称。物理学家们用了超对称这个名字的原因是,这种对称性既不同于我们前面提到的空间对称性,也不同于使得光子没有质量的对称性。超对称要求对应于自然中的每一个粒子还存在另一个粒子,这些粒子我们一直没有看到,所以超对称也不是完美的对称性。
超对称本来像一面镜子,在镜子的外面是自然界中所有的已知粒子,镜子里面是所有已知粒子的镜像——它们组成了另一个我们还没有发现的世界,当然也存在于我们所在的同一个空间中。现在,由于某种未知的原因,这个镜子被打破了,从而镜子中的那些粒子与我们看到的粒子不完全一样了,它们更重,这是迄今我们还没有看到这些粒子的原因。但这些粒子的存在保护了希格斯粒子。当真空中粒子产生和消失使得希格斯粒子的质量变大时,那些超对称粒子的产生和消失使得希格斯粒子质量变小。粒子物理学家们还没有找到一个比超对称更好的方法解决希格斯粒子的质量问题,所以多数人相信超对称性以及超对称粒子。
现在,大型强子对撞机在过去一年中工作的结果告诉我们,超对称这个理论是有机会的。原因很简单,一个质量小于130GeV的希格斯粒子让原来的标准模型变得很不完美。
有几位物理学家分析道,假如没有新物理原理,没有标准模型之外的新粒子,那么真空是不稳定的,能量达到一千亿GeV时,希格斯场将导致灾难。虽然这个能量很高,考虑到量子力学,只要时间足够长,那么真空总会在某一个地方开始衰变。计算表明,这个等待时间长于宇宙的现在年龄。看起来似乎与我们还活着不矛盾,但理论上,这是一个不完美的世界,甚至是一个自相矛盾的世界。所以,肯定会有新的物理原理和新粒子将真空稳定下来。也就是说,如果希格斯粒子的质量真的是125GeV,标准模型肯定不是粒子物理的最后理论。如果足够幸运,大型强子对撞机将会发现部分新物理原理。
2012年肯定不是世界末日。在物理学中,2012年将是激动人心的一年,很可能载入物理学史册甚至人类文明史册。2012年,我们将俘获希格斯粒子,我们可能发现新的物理学原理例如超对称。甚至,如果足够侥幸的话,中微子超光速将被其他实验验证。
希格斯粒子为什么这么特殊
关于希格斯粒子,有一个特殊的称呼,即上帝粒子。1993年,诺贝尔奖获得者、实验粒子物理学家Leon Lederman在他的名为《上帝粒子:如果宇宙是答案,那么什么是相应的问题?》的科普著作中将它称为上帝粒子。
我们知道,粒子物理学家研究的对象是物质世界的基本相互作用形式和物质的基本组元。在19世纪末,物理学家们相信分子原子的存在,俄国物理学家门捷列夫甚至编了元素周期表。20世纪初,物理学家通过实验肯定了原子的存在,并且在后来的实验中通过显微镜看到了原子。后来,物理学家发现,原子是由电子和原子核组成的,而原子核是由质子和中子组成的。
到了20世纪70年代,物理学家又发现,即使质子和中子也是复合粒子,由夸克组成,所以,从70年代到90年代,物理学家肯定了基本粒子家族的成员,它们是电子、中微子和夸克,以及类似电子的μ子(渺子)和τ子(陶子)。电子和中微子以及类似它们的粒子叫轻子,夸克叫重子。这些粒子都是费米子,都有自旋1/2(级半个角动量量子)。
在费米子之外,还有玻色子。玻色子的自旋是角动量量子的整数倍,例如无所不在的光子、传递强相互作用的胶子,以及传递弱相互作用的中间玻色子。这些传递力的粒子的自旋都是1。物理学家用这些基本粒子建立了所谓粒子物理标准模型。之所以称这个模型为标准的,是因为到现在为止我们还没有发现有什么基本物理现象这个模型解释不了。因此,诺贝尔奖获得者Weinberg建议将这个模型称为标准理论,因为理论听上去似乎比模型更高级些。
现在轮到希格斯粒子了,这是标准模型中唯一与其它粒子不同的粒子。第一,它的自旋为0,也就是没有自旋,所以也是玻色子。第二,它决定了粒子物理中的真空性质,也就是说,它的存在赋予真空一些特性,使得所有其它粒子在这个真空存在时获得质量。由于这个特殊地位,Lederman通俗地称之为上帝粒子。
有一个故事说,Lederman将他的科普书交给出版商时,不是称希格斯粒子为上帝粒子(god particle),而是称它为操蛋粒子(goddamn particle),但编辑觉得这个名字太不雅了,改成了上帝粒子。这个故事是Lederman自己说出来的,因此有人怀疑Lederman在编故事,觉得他不会用操蛋这个词,他只是为了宣传他的书或撇清才编了这个故事。(文/南方周末)
(作者系中科院理论物理研究所研究员)